top of page

DISTRIBUCION NORMAL 

En estadística y probabilidad se llama distribución normal, distribución de Gauss, distribución gaussiana o distribución de Laplace-Gauss, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en estadística y en la teoría de probabilidades.1

La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro estadístico. Esta curva se conoce como campana de Gauss y es el gráfico de una función gaussiana.2

La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. 3​Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.

De hecho, la estadística descriptiva sólo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental, de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacional.

La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.

Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son:

11.1.png
11.2.jpg

Norma estandarizada

11.3.JPG
11.3.1.JPG
11.3.2.JPG
11.3.3.JPG
11.3.4.JPG
DISTRIBUICION BINOMIAL

En estadística, la distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de nensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, solo dos resultados son posibles. A uno de estos se denomina «éxito» y tiene una probabilidad de ocurrencia p y al otro, «fracaso», con una probabilidad2​ q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:

{\displaystyle X\sim B(n,p)\,}

La distribución binomial es la base del test binomial de significación estadística.

11.4.1.png
11.4.2.png

un ejemplo para comprender 

11.5.JPG
bottom of page